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Probabilistic Tsunami Hazard Assessment (PTHA) [1, 2, 3] is based on the methods of Probabilistic 
Seismic Hazard Assessment (PSHA) [4, 5].  A PTHA study of Crescent City, CA, is currently underway 
and builds on the previous study of Seaside, OR [3].  This presentation briefly highlights planned 
improvements to the PTHA methodology that will be applied to Crescent City.  The Crescent City study 
will use a similar set of earthquake sources as the Seaside study, but will add earthquake sources off the 
coast of Japan and five additional sources, M < 9, in the Cascadia Subduction Zone (CSZ), based on the 
work of Goldfinger, et al. [6].  To account for slip uncertainty on the CSZ, stochastic slip distributions 
will be modeled using a von Karman autocorrelation function with correlation lengths that differ in the 
along-strike and along-dip directions [7]; the slip distribution will be represented as a Karhunen-Loeve 
expansion, to provide a precise representation of the CSZ geometry.  The uncertainty in tidal stage will 
be estimated by conducting tsunami simulations with the GeoClaw tsunami model [8] at different tide 
levels to estimate the tidal stage required to produce inundation above each exceedance level of 
interest.  These will be combined with probabilities, obtained by processing past tidal records for 
Crescent City, that the tide will be above a given stage during an appropriate time period Δt over which 
the largest waves for the given event are observed to occur. 
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